Computer Science > Logic in Computer Science
[Submitted on 28 May 2020]
Title:Adding an Abstraction Barrier to ZF Set Theory
View PDFAbstract:Much mathematical writing exists that is, explicitly or implicitly, based on set theory, often Zermelo-Fraenkel set theory (ZF) or one of its variants. In ZF, the domain of discourse contains only sets, and hence every mathematical object must be a set. Consequently, in ZF, with the usual encoding of an ordered pair ${\langle a, b\rangle}$, formulas like ${\{a\} \in \langle a, b \rangle}$ have truth values, and operations like ${\mathcal P (\langle a, b\rangle)}$ have results that are sets. Such 'accidental theorems' do not match how people think about the mathematics and also cause practical difficulties when using set theory in machine-assisted theorem proving. In contrast, in a number of proof assistants, mathematical objects and concepts can be built of type-theoretic stuff so that many mathematical objects can be, in essence, terms of an extended typed ${\lambda}$-calculus. However, dilemmas and frustration arise when formalizing mathematics in type theory.
Motivated by problems of formalizing mathematics with (1) purely set-theoretic and (2) type-theoretic approaches, we explore an option with much of the flexibility of set theory and some of the useful features of type theory. We present ZFP: a modification of ZF that has ordered pairs as primitive, non-set objects. ZFP has a more natural and abstract axiomatic definition of ordered pairs free of any notion of representation. This paper presents axioms for ZFP, and a proof in ZF (machine-checked in Isabelle/ZF) of the existence of a model for ZFP, which implies that ZFP is consistent if ZF is. We discuss the approach used to add this abstraction barrier to ZF.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.