Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Mar 2022]
Title:NPBG++: Accelerating Neural Point-Based Graphics
View PDFAbstract:We present a new system (NPBG++) for the novel view synthesis (NVS) task that achieves high rendering realism with low scene fitting time. Our method efficiently leverages the multiview observations and the point cloud of a static scene to predict a neural descriptor for each point, improving upon the pipeline of Neural Point-Based Graphics in several important ways. By predicting the descriptors with a single pass through the source images, we lift the requirement of per-scene optimization while also making the neural descriptors view-dependent and more suitable for scenes with strong non-Lambertian effects. In our comparisons, the proposed system outperforms previous NVS approaches in terms of fitting and rendering runtimes while producing images of similar quality.
Submission history
From: Ruslan Rakhimov [view email][v1] Thu, 24 Mar 2022 19:59:39 UTC (14,698 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.