Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Mar 2022]
Title:End-to-End Compressed Video Representation Learning for Generic Event Boundary Detection
View PDFAbstract:Generic event boundary detection aims to localize the generic, taxonomy-free event boundaries that segment videos into chunks. Existing methods typically require video frames to be decoded before feeding into the network, which demands considerable computational power and storage space. To that end, we propose a new end-to-end compressed video representation learning for event boundary detection that leverages the rich information in the compressed domain, i.e., RGB, motion vectors, residuals, and the internal group of pictures (GOP) structure, without fully decoding the video. Specifically, we first use the ConvNets to extract features of the I-frames in the GOPs. After that, a light-weight spatial-channel compressed encoder is designed to compute the feature representations of the P-frames based on the motion vectors, residuals and representations of their dependent I-frames. A temporal contrastive module is proposed to determine the event boundaries of video sequences. To remedy the ambiguities of annotations and speed up the training process, we use the Gaussian kernel to preprocess the ground-truth event boundaries. Extensive experiments conducted on the Kinetics-GEBD dataset demonstrate that the proposed method achieves comparable results to the state-of-the-art methods with $4.5\times$ faster running speed.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.