Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Apr 2022]
Title:Arch-Graph: Acyclic Architecture Relation Predictor for Task-Transferable Neural Architecture Search
View PDFAbstract:Neural Architecture Search (NAS) aims to find efficient models for multiple tasks. Beyond seeking solutions for a single task, there are surging interests in transferring network design knowledge across multiple tasks. In this line of research, effectively modeling task correlations is vital yet highly neglected. Therefore, we propose \textbf{Arch-Graph}, a transferable NAS method that predicts task-specific optimal architectures with respect to given task embeddings. It leverages correlations across multiple tasks by using their embeddings as a part of the predictor's input for fast adaptation. We also formulate NAS as an architecture relation graph prediction problem, with the relational graph constructed by treating candidate architectures as nodes and their pairwise relations as edges. To enforce some basic properties such as acyclicity in the relational graph, we add additional constraints to the optimization process, converting NAS into the problem of finding a Maximal Weighted Acyclic Subgraph (MWAS). Our algorithm then strives to eliminate cycles and only establish edges in the graph if the rank results can be trusted. Through MWAS, Arch-Graph can effectively rank candidate models for each task with only a small budget to finetune the predictor. With extensive experiments on TransNAS-Bench-101, we show Arch-Graph's transferability and high sample efficiency across numerous tasks, beating many NAS methods designed for both single-task and multi-task search. It is able to find top 0.16\% and 0.29\% architectures on average on two search spaces under the budget of only 50 models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.