Computer Science > Networking and Internet Architecture
[Submitted on 6 May 2022]
Title:SD-AETO: Service Deployment Enabled Adaptive Edge Task Offloading in MEC
View PDFAbstract:In recent years, edge computing, as an important pillar for future networks, has been developed rapidly. Task offloading is a key part of edge computing that can provide computing resources for resource-constrained devices to run computing-intensive applications, accelerate computing speed and save energy. An efficient and feasible task offloading scheme can not only greatly improve the quality of experience (QoE) but also provide strong support and assistance for 5G/B5G networks, the industrial Internet of Things (IIoT), computing networks and so on. To achieve these goals, this paper proposes an adaptive edge task offloading scheme assisted by service deployment (SD-AETO) focusing on the optimization of the energy utilization ratio (EUR) and the processing latency. In the pre-implementation stage of the SD-AETO scheme, a service deployment scheme is invoked to assist with task offloading considering each service's popularity. The optimal service deployment scheme is obtained by using the approximate deployment graph (AD-graph). Furthermore, a task scheduling and queue offloading design procedure is proposed to complete the SD-AETO scheme based on the task priority. The task priority is generated by the corresponding service popularity and task offloading direction. Finally, we analyze our SD-AETO scheme and compare it with related approaches, and the results show that our scheme has a higher edge offloading rate and lower resource consumption for massive task scenarios in the edge network.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.