Mathematics > Numerical Analysis
[Submitted on 12 May 2022]
Title:Optimal convergence rate of the explicit Euler method for convection-diffusion equations II: high dimensional cases
View PDFAbstract:This is the second part of study on the optimal convergence rate of the explicit Euler discretization in time for the convection-diffusion equations [Appl. Math. Lett. \textbf{131} (2022) 108048] which focuses on high-dimensional linear/nonlinear cases under Dirichlet or Neumann boundary conditions. Several new corrected difference schemes are proposed based on the explicit Euler discretization in temporal derivative and central difference discretization in spatial derivatives. The priori estimate of the corrected scheme with application to constant convection coefficients is provided at length by the maximum principle and the optimal convergence rate four is proved when the step ratios along each direction equal to $1/6$. The corrected difference schemes have essentially improved {\rm \textbf{CFL}} condition and the numerical accuracy comparing with the classical difference schemes. Numerical examples involving two-/three-dimensional linear/nonlinear problems under Dirichlet/Neumann boundary conditions such as the Fisher equation, the Chafee-Infante equation, the Burgers' equation and classification to name a few substantiate the good properties claimed for the corrected difference scheme.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.