Computer Science > Robotics
[Submitted on 12 May 2022]
Title:Bang-Bang Control Of A Tail-less Morphing Wing Flight
View PDFAbstract:Bats' dynamic morphing wings are known to be extremely high-dimensional, and they employ the combination of inertial dynamics and aerodynamics manipulations to showcase extremely agile maneuvers. Bats heavily rely on their highly flexible wings and are capable of dynamically morphing their wings to adjust aerodynamic and inertial forces applied to their wing and perform sharp banking turns. There are technical hardware and control challenges in copying the morphing wing flight capabilities of flying animals. This work is majorly focused on the modeling and control aspects of stable, tail-less, morphing wing flight. A classical control approach using bang-bang control is proposed to stabilize a bio-inspired morphing wing robot called Aerobat. Robot-environment interactions based on horseshoe vortex shedding and Wagner functions is derived to realistically evaluate the feasibility of the bang-bang control, which is then implemented on the robot in experiments to demonstrate first-time closed-loop stable flights of Aerobat.
Submission history
From: Alireza Ramezani [view email][v1] Thu, 12 May 2022 23:33:18 UTC (16,026 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.