Computer Science > Discrete Mathematics
[Submitted on 7 Jun 2022]
Title:Perturbative methods for mostly monotonic probabilistic satisfiability problems
View PDFAbstract:The probabilistic satisfiability of a logical expression is a fundamental concept known as the partition function in statistical physics and field theory, an evaluation of a related graph's Tutte polynomial in mathematics, and the Moore-Shannon network reliability of that graph in engineering. It is the crucial element for decision-making under uncertainty. Not surprisingly, it is provably hard to compute exactly or even to approximate. Many of these applications are concerned only with a subset of problems for which the solutions are monotonic functions. Here we extend the weak- and strong-coupling methods of statistical physics to heterogeneous satisfiability problems and introduce a novel approach to constructing lower and upper bounds on the approximation error for monotonic problems. These bounds combine information from both perturbative analyses to produce bounds that are tight in the sense that they are saturated by some problem instance that is compatible with all the information contained in either approximation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.