Computer Science > Robotics
[Submitted on 17 Jun 2022 (v1), last revised 26 Dec 2022 (this version, v3)]
Title:VG-Swarm: A Vision-based Gene Regulation Network for UAVs Swarm Behavior Emergence
View PDFAbstract:Unmanned Aerial Vehicles (UAVs) dynamic encirclement is an emerging field with great potential. Researchers often get inspiration from biological systems, either from macro-world like fish schools or bird flocks etc, or from micro-world like gene regulatory networks (GRN). However, most swarm control algorithms rely on centralized control, global information acquisition, and communications among neighboring agents. In this work, we propose a distributed swarm control method based purely on vision and GRN without any direct communications, in which swarm agents of e.g. UAVs can generate an entrapping pattern to encircle an escaping target of UAV based purely on their installed omnidirectional vision sensors. A finite-state-machine (FSM) describing the behavioral model of each drone is also designed so that a swarm of drones can accomplish searching and entrapping of the target collectively in an integrated way. We verify the effectiveness and efficiency of the proposed method in various simulation and real-world experiments.
Submission history
From: Yuwei Cai [view email][v1] Fri, 17 Jun 2022 10:13:56 UTC (7,712 KB)
[v2] Mon, 5 Sep 2022 09:37:29 UTC (4,186 KB)
[v3] Mon, 26 Dec 2022 09:50:23 UTC (4,130 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.