Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Jun 2022 (v1), last revised 5 Aug 2023 (this version, v2)]
Title:A Comprehensive Survey on Deep Gait Recognition: Algorithms, Datasets and Challenges
View PDFAbstract:Gait recognition aims to identify a person at a distance, serving as a promising solution for long-distance and less-cooperation pedestrian recognition. Recently, significant advancements in gait recognition have achieved inspiring success in many challenging scenarios by utilizing deep learning techniques. Against the backdrop that deep gait recognition has achieved almost perfect performance in laboratory datasets, much recent research has introduced new challenges for gait recognition, including robust deep representation modeling, in-the-wild gait recognition, and even recognition from new visual sensors such as infrared and depth cameras. Meanwhile, the increasing performance of gait recognition might also reveal concerns about biometrics security and privacy prevention for society. We provide a comprehensive survey on recent literature using deep learning and a discussion on the privacy and security of gait biometrics. This survey reviews the existing deep gait recognition methods through a novel view based on our proposed taxonomy. The proposed taxonomy differs from the conventional taxonomy of categorizing available gait recognition methods into the model- or appearance-based methods, while our taxonomic hierarchy considers deep gait recognition from two perspectives: deep representation learning and deep network architectures, illustrating the current approaches from both micro and macro levels. We also include up-to-date reviews of datasets and performance evaluations on diverse scenarios. Finally, we introduce privacy and security concerns on gait biometrics and discuss outstanding challenges and potential directions for future research.
Submission history
From: Chuanfu Shen [view email][v1] Tue, 28 Jun 2022 03:36:12 UTC (7,730 KB)
[v2] Sat, 5 Aug 2023 06:03:55 UTC (8,369 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.