Computer Science > Robotics
[Submitted on 6 Jul 2022]
Title:Physically-Feasible Repair of Reactive, Linear Temporal Logic-based, High-Level Tasks
View PDFAbstract:A typical approach to creating complex robot behaviors is to compose atomic controllers, or skills, such that the resulting behavior satisfies a high-level task; however, when a task cannot be accomplished with a given set of skills, it is difficult to know how to modify the skills to make the task possible. We present a method for combining symbolic repair with physical feasibility-checking and implementation to automatically modify existing skills such that the robot can execute a previously infeasible task.
We encode robot skills in Linear Temporal Logic (LTL) formulas that capture both safety constraints and goals for reactive tasks. Furthermore, our encoding captures the full skill execution, as opposed to prior work where only the state of the world before and after the skill is executed are considered. Our repair algorithm suggests symbolic modifications, then attempts to physically implement the suggestions by modifying the original skills subject to LTL constraints derived from the symbolic repair. If skills are not physically possible, we automatically provide additional constraints for the symbolic repair. We demonstrate our approach with a Baxter and a Clearpath Jackal.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.