Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Jul 2022 (v1), last revised 21 Jul 2022 (this version, v3)]
Title:Video Graph Transformer for Video Question Answering
View PDFAbstract:This paper proposes a Video Graph Transformer (VGT) model for Video Quetion Answering (VideoQA). VGT's uniqueness are two-fold: 1) it designs a dynamic graph transformer module which encodes video by explicitly capturing the visual objects, their relations, and dynamics for complex spatio-temporal reasoning; and 2) it exploits disentangled video and text Transformers for relevance comparison between the video and text to perform QA, instead of entangled cross-modal Transformer for answer classification. Vision-text communication is done by additional cross-modal interaction modules. With more reasonable video encoding and QA solution, we show that VGT can achieve much better performances on VideoQA tasks that challenge dynamic relation reasoning than prior arts in the pretraining-free scenario. Its performances even surpass those models that are pretrained with millions of external data. We further show that VGT can also benefit a lot from self-supervised cross-modal pretraining, yet with orders of magnitude smaller data. These results clearly demonstrate the effectiveness and superiority of VGT, and reveal its potential for more data-efficient pretraining. With comprehensive analyses and some heuristic observations, we hope that VGT can promote VQA research beyond coarse recognition/description towards fine-grained relation reasoning in realistic videos. Our code is available at this https URL.
Submission history
From: Junbin Xiao [view email][v1] Tue, 12 Jul 2022 06:51:32 UTC (2,495 KB)
[v2] Mon, 18 Jul 2022 09:17:10 UTC (2,495 KB)
[v3] Thu, 21 Jul 2022 05:32:27 UTC (2,495 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.