Computer Science > Machine Learning
[Submitted on 17 Aug 2022 (v1), last revised 27 Aug 2022 (this version, v2)]
Title:SYNTHESIS: A Semi-Asynchronous Path-Integrated Stochastic Gradient Method for Distributed Learning in Computing Clusters
View PDFAbstract:To increase the training speed of distributed learning, recent years have witnessed a significant amount of interest in developing both synchronous and asynchronous distributed stochastic variance-reduced optimization methods. However, all existing synchronous and asynchronous distributed training algorithms suffer from various limitations in either convergence speed or implementation complexity. This motivates us to propose an algorithm called STNTHESIS (semi-asynchronous path-integrated stochastic gradient search), which leverages the special structure of the variance-reduction framework to overcome the limitations of both synchronous and asynchronous distributed learning algorithms while retaining their salient features. We consider two implementations of STNTHESIS under distributed and shared memory architectures. We show that our STNTHESIS algorithms have $O(\sqrt{N}\epsilon^{-2}(\Delta+1)+N)$ and $O(\sqrt{N}\epsilon^{-2}(\Delta+1) d+N)$ computational complexities for achieving an $\epsilon$-stationary point in non-convex learning under distributed and shared memory architectures, respectively, where N denotes the total number of training samples and $\Delta$ represents the maximum delay of the workers. Moreover, we investigate the generalization performance of \algname by establishing algorithmic stability bounds for quadratic strongly convex and non-convex optimization. We further conduct extensive numerical experiments to verify our theoretical findings
Submission history
From: Zhuqing Liu [view email][v1] Wed, 17 Aug 2022 17:42:33 UTC (2,565 KB)
[v2] Sat, 27 Aug 2022 15:46:48 UTC (2,565 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.