Computer Science > Computation and Language
[Submitted on 11 Oct 2022]
Title:Scaling Up Deliberation for Multilingual ASR
View PDFAbstract:Multilingual end-to-end automatic speech recognition models are attractive due to its simplicity in training and deployment. Recent work on large-scale training of such models has shown promising results compared to monolingual models. However, the work often focuses on multilingual models themselves in a single-pass setup. In this work, we investigate second-pass deliberation for multilingual speech recognition. Our proposed deliberation is multilingual, i.e., the text encoder encodes hypothesis text from multiple languages, and the decoder attends to multilingual text and audio. We investigate scaling the deliberation text encoder and decoder, and compare scaling the deliberation decoder and the first-pass cascaded encoder. We show that deliberation improves the average WER on 9 languages by 4% relative compared to the single-pass model. By increasing the size of the deliberation up to 1B parameters, the average WER improvement increases to 9%, with up to 14% for certain languages. Our deliberation rescorer is based on transformer layers and can be parallelized during rescoring.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.