Electrical Engineering and Systems Science > Systems and Control
[Submitted on 22 Nov 2022 (v1), last revised 16 Jan 2025 (this version, v2)]
Title:Safe Control and Learning Using the Generalized Action Governor
View PDF HTML (experimental)Abstract:This article introduces a general framework for safe control and learning based on the generalized action governor (AG). The AG is a supervisory scheme for augmenting a nominal closed-loop system with the ability of strictly handling prescribed safety constraints. In the first part of this article, we present a generalized AG methodology and analyze its key properties in a general setting. Then, we introduce tailored AG design approaches derived from the generalized methodology for linear and discrete systems. Afterward, we discuss the application of the generalized AG to facilitate safe online learning, which aims at safely evolving control parameters using real-time data to enhance control performance in uncertain systems. We present two safe learning algorithms based on, respectively, reinforcement learning and data-driven Koopman operator-based control integrated with the generalized AG to exemplify this application. Finally, we illustrate the developments with a numerical example.
Submission history
From: Nan Li [view email][v1] Tue, 22 Nov 2022 23:25:25 UTC (749 KB)
[v2] Thu, 16 Jan 2025 13:40:30 UTC (3,032 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.