Computer Science > Machine Learning
[Submitted on 9 Dec 2022]
Title:Machine Learning-based Classification of Birds through Birdsong
View PDFAbstract:Audio sound recognition and classification is used for many tasks and applications including human voice recognition, music recognition and audio tagging. In this paper we apply Mel Frequency Cepstral Coefficients (MFCC) in combination with a range of machine learning models to identify (Australian) birds from publicly available audio files of their birdsong. We present approaches used for data processing and augmentation and compare the results of various state of the art machine learning models. We achieve an overall accuracy of 91% for the top-5 birds from the 30 selected as the case study. Applying the models to more challenging and diverse audio files comprising 152 bird species, we achieve an accuracy of 58%
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.