Computer Science > Computation and Language
[Submitted on 11 Jan 2023]
Title:The Role of Interactive Visualization in Explaining (Large) NLP Models: from Data to Inference
View PDFAbstract:With a constant increase of learned parameters, modern neural language models become increasingly more powerful. Yet, explaining these complex model's behavior remains a widely unsolved problem. In this paper, we discuss the role interactive visualization can play in explaining NLP models (XNLP). We motivate the use of visualization in relation to target users and common NLP pipelines. We also present several use cases to provide concrete examples on XNLP with visualization. Finally, we point out an extensive list of research opportunities in this field.
Submission history
From: Hendrik Strobelt [view email][v1] Wed, 11 Jan 2023 15:46:52 UTC (10,938 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.