Computer Science > Information Retrieval
[Submitted on 14 Feb 2023 (v1), last revised 1 Dec 2024 (this version, v3)]
Title:Intelligent Model Update Strategy for Sequential Recommendation
View PDF HTML (experimental)Abstract:Modern online platforms are increasingly employing recommendation systems to address information overload and improve user engagement. There is an evolving paradigm in this research field that recommendation network learning occurs both on the cloud and on edges with knowledge transfer in between (i.e., edge-cloud collaboration). Recent works push this field further by enabling edge-specific context-aware adaptivity, where model parameters are updated in real-time based on incoming on-edge data. However, we argue that frequent data exchanges between the cloud and edges often lead to inefficiency and waste of communication/computation resources, as considerable parameter updates might be redundant. To investigate this problem, we introduce Intelligent Edge-Cloud Parameter Request Model, abbreviated as IntellectReq.
IntellectReq is designed to operate on edge, evaluating the cost-benefit landscape of parameter requests with minimal computation and communication overhead. We formulate this as a novel learning task, aimed at the detection of out-of-distribution data, thereby fine-tuning adaptive communication strategies. Further, we employ statistical mapping techniques to convert real-time user behavior into a normal distribution, thereby employing multi-sample outputs to quantify the model's uncertainty and thus its generalization capabilities. Rigorous empirical validation on four widely-adopted benchmarks evaluates our approach, evidencing a marked improvement in the efficiency and generalizability of edge-cloud collaborative and dynamic recommendation systems.
Submission history
From: Zheqi Lv [view email][v1] Tue, 14 Feb 2023 20:44:12 UTC (2,184 KB)
[v2] Sat, 24 Aug 2024 02:22:16 UTC (4,272 KB)
[v3] Sun, 1 Dec 2024 16:41:49 UTC (4,265 KB)
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.