Computer Science > Artificial Intelligence
[Submitted on 20 Feb 2023 (v1), last revised 29 Aug 2023 (this version, v2)]
Title:Unreliable Partial Label Learning with Recursive Separation
View PDFAbstract:Partial label learning (PLL) is a typical weakly supervised learning problem in which each instance is associated with a candidate label set, and among which only one is true. However, the assumption that the ground-truth label is always among the candidate label set would be unrealistic, as the reliability of the candidate label sets in real-world applications cannot be guaranteed by annotators. Therefore, a generalized PLL named Unreliable Partial Label Learning (UPLL) is proposed, in which the true label may not be in the candidate label set. Due to the challenges posed by unreliable labeling, previous PLL methods will experience a marked decline in performance when applied to UPLL. To address the issue, we propose a two-stage framework named Unreliable Partial Label Learning with Recursive Separation (UPLLRS). In the first stage, the self-adaptive recursive separation strategy is proposed to separate the training set into a reliable subset and an unreliable subset. In the second stage, a disambiguation strategy is employed to progressively identify the ground-truth labels in the reliable subset. Simultaneously, semi-supervised learning methods are adopted to extract valuable information from the unreliable subset. Our method demonstrates state-of-the-art performance as evidenced by experimental results, particularly in situations of high unreliability. Code and supplementary materials are available at this https URL.
Submission history
From: Yu Shi [view email][v1] Mon, 20 Feb 2023 10:39:31 UTC (50 KB)
[v2] Tue, 29 Aug 2023 14:10:46 UTC (58 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.