Computer Science > Sound
[Submitted on 26 Feb 2023 (v1), last revised 1 Mar 2023 (this version, v2)]
Title:Mingling or Misalignment? Temporal Shift for Speech Emotion Recognition with Pre-trained Representations
View PDFAbstract:Fueled by recent advances of self-supervised models, pre-trained speech representations proved effective for the downstream speech emotion recognition (SER) task. Most prior works mainly focus on exploiting pre-trained representations and just adopt a linear head on top of the pre-trained model, neglecting the design of the downstream network. In this paper, we propose a temporal shift module to mingle channel-wise information without introducing any parameter or FLOP. With the temporal shift module, three designed baseline building blocks evolve into corresponding shift variants, i.e. ShiftCNN, ShiftLSTM, and Shiftformer. Moreover, to balance the trade-off between mingling and misalignment, we propose two technical strategies, placement of shift and proportion of shift. The family of temporal shift models all outperforms the state-of-the-art methods on the benchmark IEMOCAP dataset under both finetuning and feature extraction settings. Our code is available at this https URL.
Submission history
From: Siyuan Shen [view email][v1] Sun, 26 Feb 2023 09:35:24 UTC (200 KB)
[v2] Wed, 1 Mar 2023 06:02:14 UTC (200 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.