Computer Science > Machine Learning
[Submitted on 18 Mar 2023]
Title:Learn, Unlearn and Relearn: An Online Learning Paradigm for Deep Neural Networks
View PDFAbstract:Deep neural networks (DNNs) are often trained on the premise that the complete training data set is provided ahead of time. However, in real-world scenarios, data often arrive in chunks over time. This leads to important considerations about the optimal strategy for training DNNs, such as whether to fine-tune them with each chunk of incoming data (warm-start) or to retrain them from scratch with the entire corpus of data whenever a new chunk is available. While employing the latter for training can be resource-intensive, recent work has pointed out the lack of generalization in warm-start models. Therefore, to strike a balance between efficiency and generalization, we introduce Learn, Unlearn, and Relearn (LURE) an online learning paradigm for DNNs. LURE interchanges between the unlearning phase, which selectively forgets the undesirable information in the model through weight reinitialization in a data-dependent manner, and the relearning phase, which emphasizes learning on generalizable features. We show that our training paradigm provides consistent performance gains across datasets in both classification and few-shot settings. We further show that it leads to more robust and well-calibrated models.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.