Computer Science > Artificial Intelligence
[Submitted on 27 May 2023 (v1), last revised 1 Jan 2025 (this version, v5)]
Title:MADiff: Offline Multi-agent Learning with Diffusion Models
View PDF HTML (experimental)Abstract:Offline reinforcement learning (RL) aims to learn policies from pre-existing datasets without further interactions, making it a challenging task. Q-learning algorithms struggle with extrapolation errors in offline settings, while supervised learning methods are constrained by model expressiveness. Recently, diffusion models (DMs) have shown promise in overcoming these limitations in single-agent learning, but their application in multi-agent scenarios remains unclear. Generating trajectories for each agent with independent DMs may impede coordination, while concatenating all agents' information can lead to low sample efficiency. Accordingly, we propose MADiff, which is realized with an attention-based diffusion model to model the complex coordination among behaviors of multiple agents. To our knowledge, MADiff is the first diffusion-based multi-agent learning framework, functioning as both a decentralized policy and a centralized controller. During decentralized executions, MADiff simultaneously performs teammate modeling, and the centralized controller can also be applied in multi-agent trajectory predictions. Our experiments demonstrate that MADiff outperforms baseline algorithms across various multi-agent learning tasks, highlighting its effectiveness in modeling complex multi-agent interactions. Our code is available at this https URL.
Submission history
From: Zhengbang Zhu [view email][v1] Sat, 27 May 2023 02:14:09 UTC (2,609 KB)
[v2] Mon, 14 Aug 2023 13:48:38 UTC (2,609 KB)
[v3] Wed, 20 Dec 2023 14:54:15 UTC (3,074 KB)
[v4] Sat, 25 May 2024 13:02:09 UTC (4,013 KB)
[v5] Wed, 1 Jan 2025 15:35:04 UTC (3,189 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.