Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 May 2023]
Title:You Don't Have to Be Perfect to Be Amazing: Unveil the Utility of Synthetic Images
View PDFAbstract:Synthetic images generated from deep generative models have the potential to address data scarcity and data privacy issues. The selection of synthesis models is mostly based on image quality measurements, and most researchers favor synthetic images that produce realistic images, i.e., images with good fidelity scores, such as low Fréchet Inception Distance (FID) and high Peak Signal-To-Noise Ratio (PSNR). However, the quality of synthetic images is not limited to fidelity, and a wide spectrum of metrics should be evaluated to comprehensively measure the quality of synthetic images. In addition, quality metrics are not truthful predictors of the utility of synthetic images, and the relations between these evaluation metrics are not yet clear. In this work, we have established a comprehensive set of evaluators for synthetic images, including fidelity, variety, privacy, and utility. By analyzing more than 100k chest X-ray images and their synthetic copies, we have demonstrated that there is an inevitable trade-off between synthetic image fidelity, variety, and privacy. In addition, we have empirically demonstrated that the utility score does not require images with both high fidelity and high variety. For intra- and cross-task data augmentation, mode-collapsed images and low-fidelity images can still demonstrate high utility. Finally, our experiments have also showed that it is possible to produce images with both high utility and privacy, which can provide a strong rationale for the use of deep generative models in privacy-preserving applications. Our study can shore up comprehensive guidance for the evaluation of synthetic images and elicit further developments for utility-aware deep generative models in medical image synthesis.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.