Computer Science > Sound
[Submitted on 30 May 2023]
Title:Pseudo-Siamese Network based Timbre-reserved Black-box Adversarial Attack in Speaker Identification
View PDFAbstract:In this study, we propose a timbre-reserved adversarial attack approach for speaker identification (SID) to not only exploit the weakness of the SID model but also preserve the timbre of the target speaker in a black-box attack setting. Particularly, we generate timbre-reserved fake audio by adding an adversarial constraint during the training of the voice conversion model. Then, we leverage a pseudo-Siamese network architecture to learn from the black-box SID model constraining both intrinsic similarity and structural similarity simultaneously. The intrinsic similarity loss is to learn an intrinsic invariance, while the structural similarity loss is to ensure that the substitute SID model shares a similar decision boundary to the fixed black-box SID model. The substitute model can be used as a proxy to generate timbre-reserved fake audio for attacking. Experimental results on the Audio Deepfake Detection (ADD) challenge dataset indicate that the attack success rate of our proposed approach yields up to 60.58% and 55.38% in the white-box and black-box scenarios, respectively, and can deceive both human beings and machines.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.