Electrical Engineering and Systems Science > Signal Processing
[Submitted on 29 Oct 2023 (v1), last revised 7 Nov 2023 (this version, v2)]
Title:Kernel-based Joint Multiple Graph Learning and Clustering of Graph Signals
View PDFAbstract:Within the context of Graph Signal Processing (GSP), Graph Learning (GL) is concerned with the inference of the graph's underlying structure from nodal observations. However, real-world data often contains diverse information, necessitating the simultaneous clustering and learning of multiple graphs. In practical applications, valuable node-specific covariates, represented as kernels, have been underutilized by existing graph signal clustering methods. In this letter, we propose a new framework, named Kernel-based joint Multiple GL and clustering of graph signals (KMGL), that leverages a multi-convex optimization approach. This allows us to integrate node-side information, construct low-pass filters, and efficiently solve the optimization problem. The experiments demonstrate that KMGL significantly enhances the robustness of GL and clustering, particularly in scenarios with high noise levels and a substantial number of clusters. These findings underscore the potential of KMGL for improving the performance of GSP methods in diverse, real-world applications.
Submission history
From: Mohamad H. Alizade [view email][v1] Sun, 29 Oct 2023 13:41:12 UTC (107 KB)
[v2] Tue, 7 Nov 2023 11:12:31 UTC (308 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.