Computer Science > Computation and Language
[Submitted on 14 Nov 2023]
Title:Workflow-Guided Response Generation for Task-Oriented Dialogue
View PDFAbstract:Task-oriented dialogue (TOD) systems aim to achieve specific goals through interactive dialogue. Such tasks usually involve following specific workflows, i.e. executing a sequence of actions in a particular order. While prior work has focused on supervised learning methods to condition on past actions, they do not explicitly optimize for compliance to a desired workflow. In this paper, we propose a novel framework based on reinforcement learning (RL) to generate dialogue responses that are aligned with a given workflow. Our framework consists of ComplianceScorer, a metric designed to evaluate how well a generated response executes the specified action, combined with an RL opimization process that utilizes an interactive sampling technique. We evaluate our approach on two TOD datasets, Action-Based Conversations Dataset (ABCD) (Chen et al., 2021a) and MultiWOZ 2.2 (Zang et al., 2020) on a range of automated and human evaluation metrics. Our findings indicate that our RL-based framework outperforms baselines and is effective at enerating responses that both comply with the intended workflows while being expressed in a natural and fluent manner.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.