Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Nov 2023]
Title:Self-Annotated 3D Geometric Learning for Smeared Points Removal
View PDFAbstract:There has been significant progress in improving the accuracy and quality of consumer-level dense depth sensors. Nevertheless, there remains a common depth pixel artifact which we call smeared points. These are points not on any 3D surface and typically occur as interpolations between foreground and background objects. As they cause fictitious surfaces, these points have the potential to harm applications dependent on the depth maps. Statistical outlier removal methods fare poorly in removing these points as they tend also to remove actual surface points. Trained network-based point removal faces difficulty in obtaining sufficient annotated data. To address this, we propose a fully self-annotated method to train a smeared point removal classifier. Our approach relies on gathering 3D geometric evidence from multiple perspectives to automatically detect and annotate smeared points and valid points. To validate the effectiveness of our method, we present a new benchmark dataset: the Real Azure-Kinect dataset. Experimental results and ablation studies show that our method outperforms traditional filters and other self-annotated methods. Our work is publicly available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.