Computer Science > Information Theory
[Submitted on 15 Jan 2024]
Title:Fast Successive-Cancellation Decoding of 2 x 2 Kernel Non-Binary Polar Codes: Identification, Decoding and Simplification
View PDF HTML (experimental)Abstract:Non-binary polar codes (NBPCs) decoded by successive cancellation (SC) algorithm have remarkable bit-error-rate performance compared to the binary polar codes (BPCs). Due to the serial nature, SC decoding suffers from large latency. The latency issue in BPCs has been the topic of extensive research and it has been notably resolved by the introduction of fast SC-based decoders. However, the vast majority of research on NBPCs is devoted to issues concerning design and efficient implementation. In this paper, we propose fast SC decoding for NBPCs constructed based on 2 x 2 kernels. In particular, we identify various non-binary special nodes in the SC decoding tree of NBPCs and propose their fast decoding. This way, we avoid traversing the full decoding tree and significantly reduce the decoding delay compared to symbol-by-symbol SC decoding. We also propose a simplified NBPC structure that facilitates the procedure of non-binary fast SC decoding. Using our proposed fast non-binary decoder, we observed an improvement of up to 95% in latency concerning the original SC decoding. This is while our proposed fast SC decoder for NBPCs incurs no error-rate loss.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.