Computer Science > Computers and Society
[Submitted on 1 Feb 2024]
Title:Common errors in Generative AI systems used for knowledge extraction in the climate action domain
View PDFAbstract:Large Language Models (LLMs) and, more specifically, the Generative Pre-Trained Transformers (GPT) can help stakeholders in climate action explore digital knowledge bases and extract and utilize climate action knowledge in a sustainable manner. However, LLMs are "probabilistic models of knowledge bases" that excel at generating convincing texts but cannot be entirely relied upon due to the probabilistic nature of the information produced. This brief report illustrates the problem space with examples of LLM responses to some of the questions of relevance to climate action.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.