Computer Science > Computational Geometry
[Submitted on 21 Feb 2024]
Title:Generalized Red-Blue Circular Annulus Cover Problem
View PDF HTML (experimental)Abstract:We study the Generalized Red-Blue Annulus Cover problem for two sets of points, red ($R$) and blue ($B$), where each point $p \in R\cup B$ is associated with a positive penalty ${\cal P}(p)$. The red points have non-covering penalties, and the blue points have covering penalties. The objective is to compute a circular annulus ${\cal A}$ such that the value of the function ${\cal P}({R}^{out})$ + ${\cal P}({ B}^{in})$ is minimum, where ${R}^{out} \subseteq {R}$ is the set of red points not covered by ${\cal A}$ and ${B}^{in} \subseteq {B}$ is the set of blue points covered by $\cal A$. We also study another version of this problem, where all the red points in $R$ and the minimum number of points in $B$ are covered by the circular annulus in two dimensions. We design polynomial-time algorithms for all such circular annulus problems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.