Computer Science > Robotics
[Submitted on 22 Mar 2024]
Title:TriHelper: Zero-Shot Object Navigation with Dynamic Assistance
View PDF HTML (experimental)Abstract:Navigating toward specific objects in unknown environments without additional training, known as Zero-Shot object navigation, poses a significant challenge in the field of robotics, which demands high levels of auxiliary information and strategic planning. Traditional works have focused on holistic solutions, overlooking the specific challenges agents encounter during navigation such as collision, low exploration efficiency, and misidentification of targets. To address these challenges, our work proposes TriHelper, a novel framework designed to assist agents dynamically through three primary navigation challenges: collision, exploration, and detection. Specifically, our framework consists of three innovative components: (i) Collision Helper, (ii) Exploration Helper, and (iii) Detection Helper. These components work collaboratively to solve these challenges throughout the navigation process. Experiments on the Habitat-Matterport 3D (HM3D) and Gibson datasets demonstrate that TriHelper significantly outperforms all existing baseline methods in Zero-Shot object navigation, showcasing superior success rates and exploration efficiency. Our ablation studies further underscore the effectiveness of each helper in addressing their respective challenges, notably enhancing the agent's navigation capabilities. By proposing TriHelper, we offer a fresh perspective on advancing the object navigation task, paving the way for future research in the domain of Embodied AI and visual-based navigation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.