Computer Science > Cryptography and Security
[Submitted on 27 Mar 2024]
Title:MisGUIDE : Defense Against Data-Free Deep Learning Model Extraction
View PDF HTML (experimental)Abstract:The rise of Machine Learning as a Service (MLaaS) has led to the widespread deployment of machine learning models trained on diverse datasets. These models are employed for predictive services through APIs, raising concerns about the security and confidentiality of the models due to emerging vulnerabilities in prediction APIs. Of particular concern are model cloning attacks, where individuals with limited data and no knowledge of the training dataset manage to replicate a victim model's functionality through black-box query access. This commonly entails generating adversarial queries to query the victim model, thereby creating a labeled dataset.
This paper proposes "MisGUIDE", a two-step defense framework for Deep Learning models that disrupts the adversarial sample generation process by providing a probabilistic response when the query is deemed OOD. The first step employs a Vision Transformer-based framework to identify OOD queries, while the second step perturbs the response for such queries, introducing a probabilistic loss function to MisGUIDE the attackers. The aim of the proposed defense method is to reduce the accuracy of the cloned model while maintaining accuracy on authentic queries. Extensive experiments conducted on two benchmark datasets demonstrate that the proposed framework significantly enhances the resistance against state-of-the-art data-free model extraction in black-box settings.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.