Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Apr 2024 (v1), last revised 17 Feb 2025 (this version, v2)]
Title:Grounded Knowledge-Enhanced Medical Vision-Language Pre-training for Chest X-Ray
View PDF HTML (experimental)Abstract:Medical foundation models have the potential to revolutionize healthcare by providing robust and generalized representations of medical data. Medical vision-language pre-training has emerged as a promising approach for learning domain-general representations of medical image and text. Current algorithms that exploit global and local alignment between medical image and text could however be marred by redundant information in medical data. To address this issue, we propose a grounded knowledge-enhanced medical vision-language pre-training (GK-MVLP) framework for chest X-ray. In this framework, medical knowledge was grounded to the appropriate anatomical regions by using a transformer-based grounded knowledge-enhanced module for fine-grained alignment between textural features of medical knowledge and the corresponding anatomical region-level visual features. The performance of GK-MVLP was competitive with or exceeded the state of the art on downstream image understanding tasks (chest X-ray disease classification, disease localization), generative task (report generation), and vision-language understanding task (medical visual question-answering). Our results demonstrate the advantage of incorporating grounding mechanism to remove biases and improve the alignment between chest X-ray image and radiology report.
Submission history
From: Qiao Deng [view email][v1] Tue, 23 Apr 2024 05:16:24 UTC (1,497 KB)
[v2] Mon, 17 Feb 2025 02:49:16 UTC (28,398 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.