Computer Science > Computation and Language
[Submitted on 4 May 2024 (v1), last revised 23 Sep 2024 (this version, v2)]
Title:A Framework for Human Evaluation of Large Language Models in Healthcare Derived from Literature Review
View PDFAbstract:With generative artificial intelligence (AI), particularly large language models (LLMs), continuing to make inroads in healthcare, it is critical to supplement traditional automated evaluations with human evaluations. Understanding and evaluating the output of LLMs is essential to assuring safety, reliability, and effectiveness. However, human evaluation's cumbersome, time-consuming, and non-standardized nature presents significant obstacles to comprehensive evaluation and widespread adoption of LLMs in practice. This study reviews existing literature on human evaluation methodologies for LLMs in healthcare. We highlight a notable need for a standardized and consistent human evaluation approach. Our extensive literature search, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, includes publications from January 2018 to February 2024. The review examines the human evaluation of LLMs across various medical specialties, addressing factors such as evaluation dimensions, sample types and sizes, selection, and recruitment of evaluators, frameworks and metrics, evaluation process, and statistical analysis type. Drawing on the diverse evaluation strategies employed in these studies, we propose a comprehensive and practical framework for human evaluation of LLMs: QUEST: Quality of Information, Understanding and Reasoning, Expression Style and Persona, Safety and Harm, and Trust and Confidence. This framework aims to improve the reliability, generalizability, and applicability of human evaluation of LLMs in different healthcare applications by defining clear evaluation dimensions and offering detailed guidelines.
Submission history
From: Yanshan Wang [view email][v1] Sat, 4 May 2024 04:16:07 UTC (1,037 KB)
[v2] Mon, 23 Sep 2024 18:00:20 UTC (1,687 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.