Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 May 2024]
Title:Hierarchical Space-Time Attention for Micro-Expression Recognition
View PDF HTML (experimental)Abstract:Micro-expression recognition (MER) aims to recognize the short and subtle facial movements from the Micro-expression (ME) video clips, which reveal real emotions. Recent MER methods mostly only utilize special frames from ME video clips or extract optical flow from these special frames. However, they neglect the relationship between movements and space-time, while facial cues are hidden within these relationships. To solve this issue, we propose the Hierarchical Space-Time Attention (HSTA). Specifically, we first process ME video frames and special frames or data parallelly by our cascaded Unimodal Space-Time Attention (USTA) to establish connections between subtle facial movements and specific facial areas. Then, we design Crossmodal Space-Time Attention (CSTA) to achieve a higher-quality fusion for crossmodal data. Finally, we hierarchically integrate USTA and CSTA to grasp the deeper facial cues. Our model emphasizes temporal modeling without neglecting the processing of special data, and it fuses the contents in different modalities while maintaining their respective uniqueness. Extensive experiments on the four benchmarks show the effectiveness of our proposed HSTA. Specifically, compared with the latest method on the CASME3 dataset, it achieves about 3% score improvement in seven-category classification.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.