Computer Science > Computational Complexity
[Submitted on 6 May 2024]
Title:Decision algorithms for reversibility of one-dimensional non-linear cellular automata under null boundary conditions
View PDFAbstract:The property of reversibility is quite meaningful for the classic theoretical computer science model, cellular automata. For the reversibility problem for a CA under null boundary conditions, while linear rules have been studied a lot, the non-linear rules remain unexplored at present. The paper investigates the reversibility problem of general one-dimensional CA on a finite field $\mathbb{Z}_p$, and proposes an approach to optimize the Amoroso's infinite CA surjectivity detection algorithm. This paper proposes algorithms for deciding the reversibility of one-dimensional CA under null boundary conditions. We propose a method to decide the strict reversibility of one-dimensional CA under null boundary conditions. We also provide a bucket chain based algorithm for calculating the reversibility function of one-dimensional CA under null boundary conditions. These decision algorithms work for not only linear rules but also non-linear rules. In addition, it has been confirmed that the reversibility function always has a period, and its periodicity is related to the periodicity of the corresponding bucket chain. Some of our experiment results of reversible CA are presented in the paper, complementing and validating the theoretical aspects, and thereby further supporting the research conclusions of this paper.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.