Computer Science > Cryptography and Security
[Submitted on 11 May 2024]
Title:Stealthy Imitation: Reward-guided Environment-free Policy Stealing
View PDF HTML (experimental)Abstract:Deep reinforcement learning policies, which are integral to modern control systems, represent valuable intellectual property. The development of these policies demands considerable resources, such as domain expertise, simulation fidelity, and real-world validation. These policies are potentially vulnerable to model stealing attacks, which aim to replicate their functionality using only black-box access. In this paper, we propose Stealthy Imitation, the first attack designed to steal policies without access to the environment or knowledge of the input range. This setup has not been considered by previous model stealing methods. Lacking access to the victim's input states distribution, Stealthy Imitation fits a reward model that allows to approximate it. We show that the victim policy is harder to imitate when the distribution of the attack queries matches that of the victim. We evaluate our approach across diverse, high-dimensional control tasks and consistently outperform prior data-free approaches adapted for policy stealing. Lastly, we propose a countermeasure that significantly diminishes the effectiveness of the attack.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.