Computer Science > Machine Learning
[Submitted on 23 May 2024]
Title:Fairness Hub Technical Briefs: Definition and Detection of Distribution Shift
View PDFAbstract:Distribution shift is a common situation in machine learning tasks, where the data used for training a model is different from the data the model is applied to in the real world. This issue arises across multiple technical settings: from standard prediction tasks, to time-series forecasting, and to more recent applications of large language models (LLMs). This mismatch can lead to performance reductions, and can be related to a multiplicity of factors: sampling issues and non-representative data, changes in the environment or policies, or the emergence of previously unseen scenarios. This brief focuses on the definition and detection of distribution shifts in educational settings. We focus on standard prediction problems, where the task is to learn a model that takes in a series of input (predictors) $X=(x_1,x_2,...,x_m)$ and produces an output $Y=f(X)$.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.