Computer Science > Computational Engineering, Finance, and Science
[Submitted on 28 May 2024]
Title:NASPrecision: Neural Architecture Search-Driven Multi-Stage Learning for Surface Roughness Prediction in Ultra-Precision Machining
View PDF HTML (experimental)Abstract:Accurate surface roughness prediction is critical for ensuring high product quality, especially in areas like manufacturing and aerospace, where the smallest imperfections can compromise performance or safety. However, this is challenging due to complex, non-linear interactions among variables, which is further exacerbated with limited and imbalanced datasets. Existing methods using traditional machine learning algorithms require extensive domain knowledge for feature engineering and substantial human intervention for model selection. To address these issues, we propose NASPrecision, a Neural Architecture Search (NAS)-Driven Multi-Stage Learning Framework. This innovative approach autonomously identifies the most suitable features and models for various surface roughness prediction tasks and significantly enhances the performance by multi-stage learning. Our framework operates in three stages: 1) architecture search stage, employing NAS to automatically identify the most effective model architecture; 2) initial training stage, where we train the neural network for initial predictions; 3) refinement stage, where a subsequent model is appended to refine and capture subtle variations overlooked by the initial training stage. In light of limited and imbalanced datasets, we adopt a generative data augmentation technique to balance and generate new data by learning the underlying data distribution. We conducted experiments on three distinct real-world datasets linked to different machining techniques. Results show improvements in Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and Standard Deviation (STD) by 18%, 31%, and 22%, respectively. This establishes it as a robust and general solution for precise surface roughness prediction, potentially boosting production efficiency and product quality in key industries while minimizing domain expertise and human intervention.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.