Electrical Engineering and Systems Science > Systems and Control
[Submitted on 21 Aug 2024]
Title:Real-Time Discrete Fractional Fourier Transform Using Metamaterial Coupled Lines Network
View PDFAbstract:Discrete Fractional Fourier Transforms (DFrFT) are universal mathematical tools in signal processing, communications and microwave sensing. Despite the excessive applications of DFrFT, implementation of corresponding fractional orders in the baseband signal often leads to bulky, power-hungry, and high-latency systems. In this paper, we present a passive metamaterial coupled lines network (MCLN) that performs the analog DFrFT in real-time at microwave frequencies. The proposed MCLN consists of M parallel microstrip transmission lines (TLs) in which adjacent TLs are loaded with interdigital capacitors to enhance the coupling level. We show that with proper design of the coupling coefficients between adjacent channels, the MCLN can perform an M-point DFrFT of an arbitrary fractional order that can be designed through the length of the network. In the context of real-time signal processing for realization of DFrFT, we design, model, simulate and implement a 16x16 MCLN and experimentally demonstrate the performance of the proposed structure. The proposed innovative approach is versatile and is capable to be used in various applications where DFrFT is an essential tool. The proposed design scheme based on MCLN is scalable across the frequency spectrum and can be applied to millimeter and submillimeter wave systems.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.