Computer Science > Machine Learning
[Submitted on 18 Sep 2024 (v1), last revised 13 Oct 2024 (this version, v2)]
Title:Provable In-Context Learning of Linear Systems and Linear Elliptic PDEs with Transformers
View PDF HTML (experimental)Abstract:Foundation models for natural language processing, powered by the transformer architecture, exhibit remarkable in-context learning (ICL) capabilities, allowing pre-trained models to adapt to downstream tasks using few-shot prompts without updating their weights. Recently, transformer-based foundation models have also emerged as versatile tools for solving scientific problems, particularly in the realm of partial differential equations (PDEs). However, the theoretical foundations of the ICL capabilities in these scientific models remain largely unexplored. This work develops a rigorous error analysis for transformer-based ICL applied to solution operators associated with a family of linear elliptic PDEs. We first demonstrate that a linear transformer, defined by a linear self-attention layer, can provably learn in-context to invert linear systems arising from the spatial discretization of PDEs. This is achieved by deriving theoretical scaling laws for the prediction risk of the proposed linear transformers in terms of spatial discretization size, the number of training tasks, and the lengths of prompts used during training and inference. These scaling laws also enable us to establish quantitative error bounds for learning PDE solutions. Furthermore, we quantify the adaptability of the pre-trained transformer on downstream PDE tasks that experience distribution shifts in both tasks (represented by PDE coefficients) and input covariates (represented by the source term). To analyze task distribution shifts, we introduce a novel concept of task diversity and characterize the transformer's prediction error in terms of the magnitude of task shift, assuming sufficient diversity in the pre-training tasks. We also establish sufficient conditions to ensure task diversity. Finally, we validate the ICL-capabilities of transformers through extensive numerical experiments.
Submission history
From: Frank Cole [view email][v1] Wed, 18 Sep 2024 19:59:50 UTC (6,294 KB)
[v2] Sun, 13 Oct 2024 17:12:10 UTC (6,295 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.