Computer Science > Computers and Society
[Submitted on 5 Oct 2024]
Title:Assessing the Impact of Disorganized Background Noise on Timed Stress Task Performance Through Attention Using Machine-Learning Based Eye-Tracking Techniques
View PDFAbstract:Noise pollution has been rising alongside urbanization. Literature shows that disorganized background noise decreases attention. Timed testing, an attention-demanding stress task, has become increasingly important in assessing students' academic performance. However, there is insufficient research on how background noise affects performance in timed stress tasks by impacting attention, which this study aims to address. The paper-based SAT math test under increased time pressure was administered twice: once in silence and once with conversational and traffic background noise. Attention is negatively attributed to increasing blink rate, measured using eye landmarks from dLib's machine-learning facial-detection model. First, the study affirms that background noise detriments attention and performance. Attention, through blink rate, is established as an indicator of stress task performance. Second, the study finds that participants whose blink rates increased due to background noise differed in performance compared to those whose blink rates decreased, possibly correlating with their self-perception of noise's impact on attention. Third, using a case study, the study finds that a student with ADHD had enhanced performance and attention from background noise. Fourth, the study finds that although both groups began with similar blink rates, the group exposed to noise had significantly increased blink rate near the end, indicating that noise reduces attention over time. While schools can generally provide quiet settings for timed stress tasks, the study recommends personalized treatments for students based on how noise affects them. Future research can use different attention indices to consolidate this study's findings or conduct this study with different background noises.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.