Mathematics > Numerical Analysis
[Submitted on 21 Oct 2024]
Title:Exact local conservation of energy in fully implicit PIC algorithms
View PDF HTML (experimental)Abstract:We consider the issue of strict, fully discrete \emph{local} energy conservation for a whole class of fully implicit local-charge- and global-energy-conserving particle-in-cell (PIC) algorithms. Earlier studies demonstrated these algorithms feature strict global energy conservation. However, whether a local energy conservation theorem exists (in which the local energy update is governed by a flux balance equation at every mesh cell) for these schemes is unclear. In this study, we show that a local energy conservation theorem indeed exists. We begin our analysis with the 1D electrostatic PIC model without orbit-averaging, and then generalize our conclusions to account for orbit averaging, multiple dimensions, and electromagnetic models (Darwin). In all cases, a temporally, spatially, and particle-discrete local energy conservation theorem is shown to exist, proving that these formulations (as originally proposed in the literature), in addition to being locally charge conserving, are strictly locally energy conserving as well. In contrast to earlier proofs of local conservation in the literature \citep{xiao2017local}, which only considered continuum time, our result is valid for the fully implicit time-discrete version of all models, including important features such as orbit averaging. We demonstrate the local-energy-conservation property numerically with a paradigmatic numerical example.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.