Computer Science > Machine Learning
[Submitted on 23 Oct 2024]
Title:Mitigating Graph Covariate Shift via Score-based Out-of-distribution Augmentation
View PDF HTML (experimental)Abstract:Distribution shifts between training and testing datasets significantly impair the model performance on graph learning. A commonly-taken causal view in graph invariant learning suggests that stable predictive features of graphs are causally associated with labels, whereas varying environmental features lead to distribution shifts. In particular, covariate shifts caused by unseen environments in test graphs underscore the critical need for out-of-distribution (OOD) generalization. Existing graph augmentation methods designed to address the covariate shift often disentangle the stable and environmental features in the input space, and selectively perturb or mixup the environmental features. However, such perturbation-based methods heavily rely on an accurate separation of stable and environmental features, and their exploration ability is confined to existing environmental features in the training distribution. To overcome these limitations, we introduce a novel approach using score-based graph generation strategies that synthesize unseen environmental features while preserving the validity and stable features of overall graph patterns. Our comprehensive empirical evaluations demonstrate the enhanced effectiveness of our method in improving graph OOD generalization.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.