Computer Science > Computation and Language
[Submitted on 8 Nov 2024]
Title:The Empirical Impact of Data Sanitization on Language Models
View PDF HTML (experimental)Abstract:Data sanitization in the context of language modeling involves identifying sensitive content, such as personally identifiable information (PII), and redacting them from a dataset corpus. It is a common practice used in natural language processing (NLP) to maintain privacy. Nevertheless, the impact of data sanitization on the language understanding capability of a language model remains less studied. This paper empirically analyzes the effects of data sanitization across several benchmark language-modeling tasks including comprehension question answering (Q&A), entailment, sentiment analysis, and text classification. Our experiments cover a wide spectrum comprising finetuning small-scale language models, to prompting large language models (LLMs), on both original and sanitized datasets, and comparing their performance across the tasks. Interestingly, our results suggest that for some tasks such as sentiment analysis or entailment, the impact of redaction is quite low, typically around 1-5%, while for tasks such as comprehension Q&A there is a big drop of >25% in performance observed in redacted queries as compared to the original. For tasks that have a higher impact, we perform a deeper dive to inspect the presence of task-critical entities. Finally, we investigate correlation between performance and number of redacted entities, and also suggest a strategy to repair an already redacted dataset by means of content-based subsampling. Additional details are available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.