Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Nov 2024]
Title:BGM: Background Mixup for X-ray Prohibited Items Detection
View PDF HTML (experimental)Abstract:Prohibited item detection is crucial for ensuring public safety, yet current X-ray image-based detection methods often lack comprehensive data-driven exploration. This paper introduces a novel data augmentation approach tailored for prohibited item detection, leveraging unique characteristics inherent to X-ray imagery. Our method is motivated by observations of physical properties including: 1) X-ray Transmission Imagery: Unlike reflected light images, transmitted X-ray pixels represent composite information from multiple materials along the imaging path. 2) Material-based Pseudo-coloring: Pseudo-color rendering in X-ray images correlates directly with material properties, aiding in material distinction. Building on a novel perspective from physical properties, we propose a simple yet effective X-ray image augmentation technique, Background Mixup (BGM), for prohibited item detection in security screening contexts. The essence is the rich background simulation of X-ray images to induce the model to increase its attention to the foreground. The approach introduces 1) contour information of baggage and 2) variation of material information into the original image by Mixup at patch level. Background Mixup is plug-and-play, parameter-free, highly generalizable and provides an effective solution to the limitations of classical visual augmentations in non-reflected light imagery. When implemented with different high-performance detectors, our augmentation method consistently boosts performance across diverse X-ray datasets from various devices and environments. Extensive experimental results demonstrate that our approach surpasses strong baselines while maintaining similar training resources.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.