Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Dec 2024]
Title:Direct Coloring for Self-Supervised Enhanced Feature Decoupling
View PDF HTML (experimental)Abstract:The success of self-supervised learning (SSL) has been the focus of multiple recent theoretical and empirical studies, including the role of data augmentation (in feature decoupling) as well as complete and dimensional representation collapse. While complete collapse is well-studied and addressed, dimensional collapse has only gain attention and addressed in recent years mostly using variants of redundancy reduction (aka whitening) techniques. In this paper, we further explore a complementary approach to whitening via feature decoupling for improved representation learning while avoiding representation collapse. In particular, we perform feature decoupling by early promotion of useful features via careful feature coloring. The coloring technique is developed based on a Bayesian prior of the augmented data, which is inherently encoded for feature decoupling. We show that our proposed framework is complementary to the state-of-the-art techniques, while outperforming both contrastive and recent non-contrastive methods. We also study the different effects of coloring approach to formulate it as a general complementary technique along with other baselines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.