Computer Science > Neural and Evolutionary Computing
[Submitted on 22 Nov 2024]
Title:SpikeFI: A Fault Injection Framework for Spiking Neural Networks
View PDFAbstract:Neuromorphic computing and spiking neural networks (SNNs) are gaining traction across various artificial intelligence (AI) tasks thanks to their potential for efficient energy usage and faster computation speed. This comparative advantage comes from mimicking the structure, function, and efficiency of the biological brain, which arguably is the most brilliant and green computing machine. As SNNs are eventually deployed on a hardware processor, the reliability of the application in light of hardware-level faults becomes a concern, especially for safety- and mission-critical applications. In this work, we propose SpikeFI, a fault injection framework for SNNs that can be used for automating the reliability analysis and test generation. SpikeFI is built upon the SLAYER PyTorch framework with fault injection experiments accelerated on a single or multiple GPUs. It has a comprehensive integrated neuron and synapse fault model library, in accordance to the literature in the domain, which is extendable by the user if needed. It supports: single and multiple faults; permanent and transient faults; specified, random layer-wise, and random network-wise fault locations; and pre-, during, and post-training fault injection. It also offers several optimization speedups and built-in functions for results visualization. SpikeFI is open-source and available for download via GitHub at this https URL.
Submission history
From: Haralampos Stratigopoulos [view email][v1] Fri, 22 Nov 2024 12:08:06 UTC (1,704 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.