Computer Science > Sound
[Submitted on 27 Jan 2025]
Title:Optimized Self-supervised Training with BEST-RQ for Speech Recognition
View PDF HTML (experimental)Abstract:Self-supervised learning has been successfully used for various speech related tasks, including automatic speech recognition. BERT-based Speech pre-Training with Random-projection Quantizer (BEST-RQ) has achieved state-of-the-art results in speech recognition. In this work, we further optimize the BEST-RQ approach using Kullback-Leibler divergence as an additional regularizing loss and multi-codebook extension per cluster derived from low-level feature clustering. Preliminary experiments on train-100 split of LibriSpeech result in a relative improvement of 11.2% on test-clean by using multiple codebooks, utilizing a combination of cross-entropy and Kullback-Leibler divergence further reduces the word error rate by 4.5%. The proposed optimizations on full LibriSpeech pre-training and fine-tuning result in relative word error rate improvements of up to 23.8% on test-clean and 30.6% on test-other using 6 codebooks. Furthermore, the proposed setup leads to faster convergence in pre-training and fine-tuning and additionally stabilizes the pre-training.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.