Computer Science > Machine Learning
[Submitted on 10 Feb 2025 (v1), last revised 26 Feb 2025 (this version, v2)]
Title:TimeKAN: KAN-based Frequency Decomposition Learning Architecture for Long-term Time Series Forecasting
View PDF HTML (experimental)Abstract:Real-world time series often have multiple frequency components that are intertwined with each other, making accurate time series forecasting challenging. Decomposing the mixed frequency components into multiple single frequency components is a natural choice. However, the information density of patterns varies across different frequencies, and employing a uniform modeling approach for different frequency components can lead to inaccurate characterization. To address this challenges, inspired by the flexibility of the recent Kolmogorov-Arnold Network (KAN), we propose a KAN-based Frequency Decomposition Learning architecture (TimeKAN) to address the complex forecasting challenges caused by multiple frequency mixtures. Specifically, TimeKAN mainly consists of three components: Cascaded Frequency Decomposition (CFD) blocks, Multi-order KAN Representation Learning (M-KAN) blocks and Frequency Mixing blocks. CFD blocks adopt a bottom-up cascading approach to obtain series representations for each frequency band. Benefiting from the high flexibility of KAN, we design a novel M-KAN block to learn and represent specific temporal patterns within each frequency band. Finally, Frequency Mixing blocks is used to recombine the frequency bands into the original format. Extensive experimental results across multiple real-world time series datasets demonstrate that TimeKAN achieves state-of-the-art performance as an extremely lightweight architecture. Code is available at this https URL.
Submission history
From: Songtao Huang [view email][v1] Mon, 10 Feb 2025 03:51:26 UTC (289 KB)
[v2] Wed, 26 Feb 2025 09:04:40 UTC (289 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.